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Axiomatic Logics for ATIS 

 
 
 
Background 

Elizabeth Steiner, in her book entitled Methodology of Theory Building (Educology Research 
Associates, Sydney, Australia, 1988), states the following:   

There are four sets of methods involved in building theory.  These methods are the two 
of criticism:  explication and evaluation, and the two of construction:  emendation and 
extension.   

While it now is patent that criticism must precede construction, it is not yet obvious that 
there are steps prior to criticism; one must be able to recognize theory if one is to critique it.   

While Steiner provides a guide for determining whether or not statements can be construed 
as ‘theory’, it is in the form of interrogatories rather than definitive.  Our concern here is with the 
definitive identification of ‘theory’ in education.  Further, we are concerned with identifying and 
selecting a certain type of theory—one that is comprehensive, consistent and complete, and can be 
developed as an axiomatic theory.  Steiner asserts:   

The criteria for choice [of a theory] are functionality [that is, syntactic and semantic 
adequacy] and comprehensiveness (p. 88).   

Syntactic adequacy is determined by the logical consistency and decision procedures of the 
theory; and semantic adequacy is determined by the completeness and proper construction of the 
theory.  Steiner then concludes:   

Constructive moves in theory building, therefore, are either those of emendation or 
extension (p. 90).   

The approach that will be taken in this report is that of emendating existing theory, and to 
recognize that retroduction is a process of theory building that is an emending of existing theory; 
whether that is a single theory or multiple theories—that is, an emendation from the whole cloth of 
relevant knowledge.  In order to do so, we must see what the current state is of theory in education 
and the relevant efforts that have preceded the development of ATIS.   

As theory building is either that of emendation or extension, it is seen that the retroductive 
process is one of emendation of existing theory.   
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In 1950, Ludwig von Bertalanffy wrote “An Outline of General Systems Theory,” (British 
Journal for the Philosophy of Science, Vol. 1, No. 2, August 1950).  The writing of this report followed his 
initial attempt at presenting his concepts on General Systems Theory at a lecture in 1937 at the 
University of Chicago.  His initial efforts were not well received, but his report of 1950 has had 
widespread acceptance and has produced numerous additional related studies.   

At about the same time that Bertalanffy was developing his work on General Systems 
Theory; in 1936 Kurt Lewin was developing a formal theory of the social sciences, his “topological 
field theory.”   In this theory, Lewin introduced mathematical terminology to study human 
behavior.  The problem with Lewin’s work, however, was that it did not utilize the power of 
mathematical topology.  Although it attempted to present the image of a mathematical theory, in 
fact it was not, it was a descriptive theory that utilized mathematical concepts but not the 
mathematics.   

For example, Lewin introduced the “mathematical equation” B = ƒ(P,E) with the intention of 
asserting that ‘behavior’ is equal to a ‘function’ of two variables, ‘person’ and ‘environment’.  
Further, this “function” was supposed to indicate interdependence between ‘person’ and 
‘environment’, which it does not do.  Unfortunately, he could have represented the same or more by 
simply saying that behavior is determined by, or dependent upon, the individual and the 
individual’s environment, and they are interrelated in a manner that they produce mutual affect 
relations.  The problem is, he gave no mathematical structure or rigor to the purported function.  
There was no logic or mathematical structure in which the equation or function could be interpreted.   

However, Lewin was attempting to give mathematical rigor to an area that Bertalanffy was 
also developing—the recognition that behaviors, individuals, and environments are all interrelated; 
that is, they are part of some ‘system’.   

One problem that both Bertalanffy and Lewin had to confront was the prevailing 
methodology of classical science.  Classical science was dependent on the following techniques for 
the development of theory:  observation, hypothesis, and experiment.   This was an inductive 
process, and one that was counter to what Peirce had already clearly analyzed.  Both prior to and 
after Peirce, the classical development of theory in the social sciences was that of induction.  A 
parallel construction of theory in physics will be presented below.  It is instructive, therefore, to 
recognize that a physicist may consider the development of theory to be that of the classical science, 
even though it is not.  Since a physicist is not so much concerned with the process of theory 
development as with the development of theory, this confusion is understandable.  So, while a 
physicist may assert that the development of theory is by induction, in fact many physicists proceed 
in a manner defined by Peirce as retroduction in the vertical development of new theory, or by 
extension in the horizontal development of existing theory.   
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Karl Popper recognized the problems with the classical approach to the development of 
theory, although he continued to ignore Peirce.  As an alternative, Popper proposed a new scientific 
methodology.  In his two books, The Logic of Scientific Discovery (1968) and Conjectures and 
Refutations (1972), he introduced an alternative to inductive inference for theory building—the 
hypothetico-deductive scientific method for theory development.   

While this approach may appear to be better than the inductive method, it falls short of 
clearly defining a methodology that will result in scientific theory.  In fact, it but jumps to the 
hypothesis and explicates the “theory” from there.  The problem is that no theory has actually been 
developed.   

One problem with the hypothetico-deductive approach to theory development is that there is 
an assumption that the “hypotheses” are somehow part of a fully developed theory, since otherwise 
it is known that the hypotheses being tested are just some statements created by a researcher for the 
sole purpose of carrying out an experiment, even if it is deductively obtained from a hypothesis.  
Deductive inferences are no more reliable than the hypotheses upon which they are founded.   

It should be noted here that in physics and the other mathematical sciences, there is an 
underlying theory upon which all hypotheses rely.  That is, the researcher proceeds from an existing 
theory, whether that is Newtonian Physics, Einstein Physics, or some other theory, and this theory 
provides the framework in which the scientist works.  Then the research continues as a model is 
developed that starts to predict what the effects should be.  Experiments are then conducted to test 
the effects.  The model is refined and other researchers develop competing models.  Since both 
models cannot be right other researchers proceed to determine which model provides the correct 
interpretation of what is observed.  New predictions are then made and tested.   

After much iteration, someone determines how to start at the atomic or subatomic level and 
develop a theory that is based on certain fundamental axioms of science and ends up predicting 
exactly what happens.  Then, the value of the theory is determined by the predictions that can be 
made.  The predictions of the theory provide new outcomes that no intuition or hypothesis could 
have predicted.  These predictions are a result of the equations that were developed from the theory 
and relied on no preconceived notions that the effect could even exist.   

Possibly the best example of this theory development and results comes from quantum 
mechanics that has predicted so many counterintuitive events.  One example from physics is the 
Josephson Effect in superconductivity.  When two superconductors are held close to each other, 
there is a coupling of the quantum mechanical wave functions between the two superconductors.  
This coupling was predicted from the equations governing the theory of superconductivity and was 
quickly confirmed in the laboratory.  The Josephson Effect has become a valuable tool as a detector 
of extremely small magnetic fields and in many other practical applications.  Here, the theory 
predicted non-obvious outcomes, the very purpose of a theory.   

This sequence of research events is indicative of what is intended for the education 
researcher and is explicated in this guide for the development of an education axiomatic theory.   
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The confusion in education is that hypotheses are presented as self-contained assertions, 
whereas in fact they are not presented in a vacuum.  They must be part of some theory structure, or 
they are nothing more than the opinion of the researcher, even if that opinion is subsequently 
“validated.”  It is this process of hypothesis creation that has resulted in numerous “tests” of the 
same subject area resulting in differing conclusions.  The problem is not necessarily the tests, but 
that the underlying assumptions of the “theory” in which the hypothesis is couched have not been 
fully recognized.  Hypotheses must be generated by theory, they do not create theory nor are they 
themselves theory.   

The problem with this hypothetico-deductive methodology is that it does not produce theory.  
The theory-building process herein described is an effort to correct that problem by providing a 
means by which theory can actually be developed.  A proper methodology requires testing theory-
derived hypotheses and all new applications derived from the hypotheses until the evaluations lead 
to a new theory that describes the problem based on first principles, accepted assumptions.   

As an alternative to the hypothetico-deductive methodology, Glaser and Strauss have 
developed the “Grounded Theory” approach to the development of theory in the social sciences.  
This approach, wrongly identified as abduction from Peirce, relies on the belief that theory can be 
inductively discovered as the result of systematically analyzing data.  If so, then this approach is 
very similar to, if not identical to the data mining procedures used to structure unstructured data.  
The response to each is the same—structuring unstructured data is certainly helpful in recognizing 
established patterns within systems, but it does not produce theory.   

From the work of Steiner, both approaches can be recognized as ill-founded.  Steiner 
resolves the problems by clearly stating the distinctions between retroduction, deduction and 
induction as presented by Peirce in the 1890’s:   

Retroduction devises theory.   
Deduction explicates theory.   
Induction evaluates theory.   

An inductive process does not develop theory, whether that induction is used to directly 
propose a theory, or to develop a hypothesis from which deductive inferences are obtained.  Glaser 
and Strauss recognize the problem with induction and attempt to work around it, however, their 
attempt to couch their development under the guise of “abduction” fails.   

First, as established in Report #1 of this series, abduction is not a retroductive process.  They 
have not carefully read Peirce.  They consider abduction as a means of obtaining theory that has 
been obtained from data patterns—that is, data mining techniques.  Theory development is a 
retroductive process, and not an inductive process.  New theory is emended from existing theory, 
not existing data.  In this case, Glaser and Strauss misinterpret the abduction and retroduction 
processes.   
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Essentially, the scientific methodology of the social sciences has been hypothesis-driven.  
That is, whether the theory-building methodology has been defined by induction or hypothetico-
deduction, each relies on a hypothesis that is devoid of the foundations required of a legitimate 
theory.   

Legitimate theory is developed by retroduction, whether that retroductive process results 
from the development of new theory from existing theory or the development of new theory from 
the whole cloth of relevant knowledge.  For example, theory can be developed from the existing 
theories of Set Theory, Information Theory, Graph Theory and General Systems Theory in a very 
analytic manner, as was done for the development of the SIGGS theory model in 1966 by Maccia 
(Steiner) and Maccia.1  Or, theory can be developed from mathematics, education, chemistry, 
physics and behavioral sciences by recognizing a wholeness of concepts contained in this whole 
cloth that provides a perspective that describes and predicts what is found in education systems.   

Further, as Popper and others have recognized, theory must be axiomatic with all of the 
associated safeguards that such an approach brings.  In attempts to do so, the social sciences have 
claimed to produce theories that have a rigor similar to the physical sciences by abductively 
introducing mathematical constructs.  Logic and mathematics must not simply be brought in, as part 
of a descriptive theory, but the theory must be developed as a result of the logic and mathematics.   

This is where historical and current research in education has failed, as research continues to 
proceed from a position of validating hypotheses.  Education research is hypothesis-driven, rather 
than theory-driven.  While axiomatic logico-mathematical theories are far more difficult and 
complex than hypothesis-driven methodologies, such theories must be developed if educology is to 
move beyond a “My Theory” methodology to that of developing a consistent, comprehensive and 
complete theory of education.   

To assist in bridging the gap from hypothesis-driven to axiomatic-theory-driven science, a 
parallel development in physics will be considered.  Even in physics, which is frequently 
considered as being “proven” or “empirically valid,” theories are considered to be acceptable for 
describing the physical world as a result of a “preponderance of evidence” that they produce 
accurate predictions of that physical world.  The same will hold in the social sciences; that is, a 
theory is accepted as a result of the “preponderance of evidence” that it produces consistently valid 
predictions.   

Following is an example of the development of a theory in physics.   

 

                                                 
1 Maccia, Elizabeth Steiner & George S. Maccia (Principal Investigators), James F. Andris & Kenneth R.  
Thompson (Research Assistants), Development of Educational Theory Derived from Three Educational Theory 
Models, Final Report, Project No. 5-0638, Contract #OE4-10-186, U.S. Department of HEW & The Ohio State 
University, Research Foundation, Columbus, Ohio.  (1966) 
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Rock Theory 
Desired Theory: Electrical Properties of Rocks 
Existing Theory: Electrical Properties of Glass 

It is recognized that the electrical properties of glass may be similar to the 
electrical properties of rocks.  Therefore, the existing Electrical-Glass-Property Theory is 
used to retroductively develop an Electrical-Rock-Property Theory.   

This new theory is an emendation of the existing Glass Theory.  As such, it brings 
with it the basic logic of that theory, which is comparable to other theories in physics.   

 

Levels of Theory Construction 

 There are several levels of theory construction required, especially in an axiomatic theory, 
before the actual desired empirical theory is obtained.  These levels are discussed below, and an 
example from physics is presented on the pages following.   

The first level consists of defining the Basic Logics; that is, the Sentential, Predicate, Class 
and Relation Calculi.   

 The Basic Logics provide the decisional rules by which theorems are formally derived within 
the theory.  These provide the customary deductive logic used in physics.   

Once the decisional logic is determined, then the levels of scientific inquiry must be defined.  
These will each require its own axioms or other structure that will be used to deduce the outcomes 
of the theory.   

Various areas of physics exemplify the relation between levels of a theory.  Then, the axioms 
or laws will be tracked to exemplify how each higher-order theory affects the lower-order theories.  
In axiomatic theories, this will be accomplished by the introduction of appropriate axioms at each 
level.   

The following tree diagram depicts various levels of theories in physics in which each lower 
level is dependent on the axioms or laws of the one above it, but will also introduce axioms, laws or 
principles that are extended from those above it.   

That is, recalling that the development of theory is by emendation or extension, once the 
initial theory has been designed by an emendation of another theory; for example, by means of a 
retroductive process, then the theory is constructed by extension.  These extensions can be 
horizontal; that is, within the existing theory, or vertical; that is, by introducing sub-theories.  This 
vertical development is shown in the following diagram.  So as not to make the diagram too 
complex, only one area of physics is extended to the following vertical level below it; for example, 
“Mechanics” and then “Statics.”   
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Newtonian Physics 

 

Thermodynamics          Classical Mechanics   

 

 

Kinematics     Statics   Dynamics 

 

 

Architectural Engineering    Structural Engineering 

 

Empirical Application 

 

 

It is recognized that Thermodynamics has sub-theories extending below it, as do Kinematics 
and Dynamics.  However, we will only consider the development of each of the following theories 
as one is extended from the one above it:   

 

Newtonian Physics → Classical Mechanics → Statics → Architectural Engineering 
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Newtonian Physics 

 

 

 

 

 

 

 

 

 

 

 

 

 Thermodynamics           Classical Mechanics   

 

 

 

 

 

 

 

Kinematics       Statics         Dynamics 

 

At this level we are concerned with the axioms, hypotheses, or principles that are used to explicate Newtonian 
Physics.  In Newtonian Physics these statements are referred to as “laws” or “postulates.” 
 
Newton’s Laws of Motion: 
 
Newton's first law states that, if a body is at rest or moving at a constant speed in a straight line, it will remain 
at rest or keep moving in a straight line at constant speed unless a force acts upon it. 
This postulate is known as the law of inertia. 
 
Newton's second law states that the time rate of change of the velocity or acceleration, a, is directly proportional 
to the force F and inversely proportional to the mass m of the body; i.e., a = F/m, or F = ma. 
From the second law, all of the basic equations of dynamics can be derived.  As noted previously, this initial 
theory provides the main assumptions by which all extensions of the theory are obtained. 
 
Newton's third law states that the actions of two bodies upon each other are always equal and directly opposite. 
The third law is important in statics (bodies at rest) because it permits the separation of complex structures and 
machines into simple units that can be analyzed individually with the least number of unknown forces. 
 
Newton's law of gravitation is a statement that any particle of matter in the universe attracts any other with a 
force, F, varying directly as the product of the masses, m1 and m2, and a gravitational constant, G, and inversely 
as the square of the distance between them, R; i.e., F = G(m1 m2)/R2. 

At this level we are concerned with the axioms, hypotheses, or principles that are used to explicate 
Classical Mechanics.   
 
Classical Mechanics is a theory of the physics of forces acting on bodies.   

The first three laws of Newtonian Physics are fundamental to Classical Mechanics and the extensions 
required for this theory.   

In order to consider the problems relevant to Classical Mechanics, the definition of the ‘position’ of a 
‘point particle’ is introduced.  This is an extension of Newtonian Physics.  With the introduction of a point 
particle, the three laws are used to develop properties relevant to Classical Mechanics.  For example, 
properties relating to force and energy are developed from Newton’s Second Law.    

 
Classical Mechanics is subdivided into:  Statics, Kinematics, and Dynamics.  We will continue our 

vertical theory development by considering Statics.   

Continued on Next Page 
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 Kinematics       Statics         Dynamics 

 

 

 

 

 

 

 

 

 

 

 

 

 

Architectural Engineering    Structural Engineering 

 

 

 

 

 

 

 

Empirical Application 

At this level we are concerned with the axioms, hypotheses, or principles that are used to explicate Statics. 
   
Statics:  Statics is concerned with physical systems that are in static equilibrium.  When in static equilibrium, 
the system is either at rest or moving at constant speed.  By Newton's Second Law, this situation implies that 
the net force and net torque on every subsystem is zero.  From this constraint,  and the properties developed in 
Classical Mechanics, such quantities as stress or pressure can be derived.   

1. When a wire is pulled tight by a force, F, the stress, σ,  is defined to be the force per unit area of the 
wire:  σ = F / A.  The amount the wire stretches is called strain.   

2. Failure occurs when the load exceeds a critical value for the material; the tensile strength multiplied 
by the cross-sectional area of the wire, Fc = σt A.   

The theory has now been extended to include properties required for the Theory of Statics.  From here, 
specific properties will be required for specific areas of application as shown by the next level.   
 
Although not considered, the following definitions are provided:   

Kinematics:  Kinematics is the branch of mechanics concerned with the motions of objects without being 
concerned with the forces that cause the motion.   

Dynamics:  Dynamics is the branch of mechanics that is concerned with the effects of forces on the motion of 
objects.   

At this level we are concerned with the axioms, hypotheses, or principles that are used to explicate 
Architectural Engineering as an application of the Physics Theory of Statics.   

For example, at this level the theory extension will be with respect to specific physical problems of concern to 
architectural engineers.  For example, axioms, hypotheses, or principles related to the analysis of architectural 
structures to preclude structural failures, construction defects, expansive soils, explosions, fires, storms/hail, 
tornadoes, vehicular impacts and water leaks.   

 The theory at this level will then be used to analyze specific empirical instances.   



ATIS Report 2-ER – 10 
 

© Copyright 1996 to 2005 by Kenneth R. Thompson, Systems Predictive Technologies, 2096 Elmore Avenue, Columbus, Ohio 43224-5019; 

Site:  www.Raven58Technologies.com.   
All rights reserved.  Intellectual materials contained herein may not be copied or summarized without written permission from the author. 

The Argument for a Formal Logic 

Elizabeth Steiner, in her book Methodology of Theory Building2, asserts:   
One must understand the many forms (kinds) of theory if one is not to apply the 

wrong art, i.e., if one is not to criticize or construct theory erroneously.   

This same word of caution needs to be applied to the choice of logic that underlies the 
development of theory.  The logic of a theory provides the means by which validity of statements of 
the theory can be “proved” as “true,” and provides the means by which valid statements of the 
theory are derived.  For a scientific theory, normally a symbolic logic; that is, formal logic, is 
desired as such provides a means to obtain rigorous proofs for the validity of statements.   

The logic required for ATIS is that of the Sentential Calculus and Predicate Calculus that is 
normally used for mathematics and the mathematical sciences.  While both calculi are concerned 
with analyzing statements based only on the form of the statements, they differ in terms of the types 
of statements analyzed.   

The Sentential Calculus is concerned with the form of the aggregate statement with no 
concern of what is contained within the statement.  The Predicate Calculus is concerned with the 
logic of predicates; that is, statements and their constituent parts, as related to quantifiers—normally 
the universal and existential quantifiers, although others will be required for the logic of ATIS.   

A Predicate Calculus of this type is referred to as a First Order Predicate Calculus (FOPC) 
and is an extension of the Sentential Calculus.  Whereas the atomic sentences of the Sentential 
Calculus are propositional statements, the atomic sentences of a FOPC are predicates with one or 
more arguments; the number of arguments being the valence of the predicate.   

Further, whereas there are no quantifiers in the Sentential Calculus, FOPC introduces 
quantifiers over variables.   

A FOPC is then extended by a Second Order Predicate Calculus (SOPC) which simply 
introduces quantification over the predicates of the FOPC.  Each higher-order calculus but 
introduces quantification of the sentences of the next-lower order calculus.   

For example, a FOPC has statements of the form ∀xP(x); that is, the quantification covers 
only the variable, x.  A SOPC has statements of the form ∀P(P(x) ⊃ P(y)); that is, the quantification 
covers the predicates.  By so doing, a SOPC covers quantification over subsets and relations.  The 
next higher-order calculus would provide quantification for relations of relations.  These 
considerations are a part of Type Theory, which we do not need to address at this time.   

The advantage of a symbolic logic is that proofs are dependent only on the form of the 
statements, and not on their content.  The advantage is that while it may take great insight to 
discover a theorem, once discovered it can be checked very systematically.   

                                                 
2 Methodology of Theory Building, Elizabeth Steiner, Indiana University, Educology Research Associates, Sydney, 
1988.   
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The emphasis for theory development, however, is that the theoretician must continue to rely 
on intuition as the primary means of theory development, and the rigors of the basic logic are but a 
tool to assist in this development.  Steiner defines ‘intuition’ as a “non-inferential form of 
reasoning.  It is a direct intellectual observation of the essence of what is given in experience.”3   

As will be discussed later, the System Logic schemas will be presented in two forms:  Those 
that are derived directly from the axioms and should, therefore, be considered directly descriptive of 
the system, and those that are “theory construction axioms” and are, therefore, to be evaluated 
through intuition or available analytic tools before being considered part of the theory.  The 
definition of ‘intuition’ by Charles Sanders Peirce addresses this desired theory-building method 
very directly when he states:   

Intuition is the regarding of the abstract in a concrete form, by the realistic 
hypostatization of relations.4   

 
While following well-defined steps can check a schema; a pragmatic logic must guide the 

development and acceptance of the theory.  The need for a pragmatic logic is especially relevant for 
ATIS System Construction Theorems (SCTs) that are an integral part of the theory explication.  
The far-reaching consequences of the introduction of this theory-development methodology is not 
elsewhere discussed in the literature, as far as this researcher has been able to determine, and will be 
only referenced herein since there may be important proprietary consequences resulting from its 
usage.  Essentially, the value of such theorem schemas will depend on the rules of construction that 
are defined for their usage.  However, they will be further considered in a later section, to as great a 
degree as possible, in the section entitled Significance of SCTs.   

A formal logic is dependent on the formal language by which the logical concepts are 
explicated.  We will start by defining formal language.   

 

                                                 
3 Methodology, Ibid., p. 93.   
4 Collected Papers of Charles Sanders Peirce, Volume 1, Principles of Philosophy, (Editors) Charles Hartshorne and 
Paul Weiss, The Belknap Press of Harvard University Press, Cambridge (1960), §1.383, p. 203.   
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Formal Language 

A formal or logical language is a set of rules for constructing formulas that can be assigned 
truth-values.  This is the primary advantage of the ATIS logical-axiomatic theory—it provides the 
means to obtain logical validation of its extensions; that is, its empirical applications.   

A formal or logical language, L, is defined as a list of primitive symbols that are classified in a 
eleven-tuple:   

L = (A,S,O,F,R,V,G,T,Q, FV,D); where: 
 A is a set of atomic statements— p q p1 q1 p2 q2 ... (where the 3 periods are extra-logical 

with their common interpretation) 
 S is a set of statement operators, one unary- and one binary-atomic statement operators, 

respectively, from which the additional statement operators are defined (‘I’ is the 
exclusive “or”)— ~ ∧     ∨ I ⊃ h  

 O is a set of atomic objects— A B A1 B1 A2 B2 ... 
 F is a set of object function operators— ∈ 4 3 \ 
 R is a set of object relation operators— = ⊂ h 
 V is a set of atomic variables— x y x1 y1 x2 y2 ... 
 G is a set of formula grouping symbols, of which there are two, and, by convention, 

additional grouping symbols are employed— ( )     [ ] { } 〈 〉 
 T is a set of statement transformation operators, of which there are two— d ~ 
 Q is a set of quantifiers, of which there is only one atomic quantifier, the universal 

quantifier, from which the additional quantifiers are defined (‘A’ is the ATIS quantifier)— 
∀     ∃ ι ŵ A 

 FV is a set of formula values— * # d d1 d2 ...   (where ‘*’ and ‘#’ designate “true” and “false”, 
respectively, and values d, d1, d2, ...∈R where R is the set of real numbers)   

 D is a set of value-assignment (descriptor) operators, of which there is only one— /  

From the above categories, we have the following list of primitive symbols:   

p q p1 q1 p2 q2 ... ~ ∧ A B A1 B1 A2 B2 ... ∈ 4 3 \ = ⊂ h x y x1 y1 x2 y2 ... ( ) d ~ ∀ * # d d1 d2 ... / 

These primitive symbols are read as follows:   

p q p1 q1 p2 q2 ... are atomic statements and are read as denoted.   

~ ∧ are unary- and binary-statement operators, respectively, and are read “not” and “and,” 
respectively.   

A B A1 B1 A2 B2 ... are atomic objects and are read as denoted.   
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∈ 4 3 \ are object function operators and are read “is an element of,” “union,” “intersection” 
and “minus,” respectively.   

= ⊂ h are object relation operators and are read “equals,” “subset,” and “equivalent to,” 
respectively.   

x y x1 y1 x2 y2 ... are atomic variables and are read as denoted.   

( ) are formula groupings and are not read.   

d is a transformation operator, and is read “produces” or “yields.”   

~ is a transformation operator, and is read “model of.”   

∀ is the universal quantifier, and is read “for all.”   

* # R are formula values, and are read “true,” “false,” and “reals.”   

/ is a value-assignment (descriptor) operators, and is read “is assigned.”   

 

While p q p1 q1 p2 q2 ... are atomic statements; in general, a statement is a sequence of 
primitive symbols.  For example, the following is a statement:   

∧p)*A14~ q50 

A formula is defined as follows:   

(1) Atomic statements are formulas;  
(2) If P is a formula, then (~P) is a formula;  
(3) If P and Q are formulas, then (P ∧ Q) is a formula;  
(4) Only statements are formulas; and  
(5) A statement is a formula only if it is constructed according to rules (1) to (3).   

For example, (~((~p2) ∧ q5)) is a formula, since it is constructed according to rules (1) to (3).   

However, (r ∧ (~p)) is not a formula, since ‘r’ is not an atomic statement and has not been 
defined as a formula.   

A production is of the form:  X1, X2, ..., Xn d Y; where ‘X1’, ‘X2’, ..., ‘Xn’, and ‘Y’ are 
statements, and if a formula occurs in Y, then it occurs in at least one of X1, X2, ..., Xn.  In such a 
production, it is said that X1, X2, ..., Xn is the premise and Y is the conclusion of the production.   
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A formula value assignment is of the form P/V, where ‘P’ is a formula and ‘V’ is either * or 
#, or a real number, d.  In such an assignment, V is the value of P.   

A predicate, P, of n arguments is of the form:  P(p1, p2,..., pn); where p1, p2,..., pn are atomic 
statements which occur in P.   

Since at this time we are not concerned with the generation of theorems, but only whether or 
not a given formula is a theorem, the axioms will not be given at this time.  Instead, the following 
transformation rules for truth value analysis are given.   

P/#, (~P) d (~P)/* 

P/*, Q/*, (P ∧ Q) d (P ∧ Q)/* 

P/d, P d P/d 

where ‘P’ and ‘Q’ are either formulas or predicates which are assumed to have the assigned values.  
It is assumed that any other value assignments of the premise will produce a value assignment of # 
in the conclusion.   

The first seven sets, the seven-tuple (A,S,O,F,R,V,G), define the signature of the language.  
The final four sets, the four-tuple (T,Q, FV,D), define the extensions of the language, while all 
eleven define the logical language, L.    

In the case of quantifiers, each quantifier is associated with a quantifier type, …n1,n2,…,nn ; 
that is, the different objects associated with the theory.  ‘Type’, or ‘sort’, designates the various 
classes of a language; for example, components, sets of components, family of sets, etc. are 
different “types.”   

If Mi is a system object-set; for example, Mi = {administrators} or Mi = {teachers} or 

Mi = {students} or Mi = {textbooks} or Mi = {classrooms} or etc., and Q
M

 is the quantification of 

M, normally designated Q w(Mi(w)), with respect to Q  in that object-set, then:   

Q wφ(w) h {w∈ Mi | φ(w)}∈Q
Mi .

5 

The following Härtig and Rescher quantifiers are examples of the value of this 
formalization.   
                                                 
5 We appreciate the work of Henry who provides this generalization of quantifier at www.PlanetMath.org.  Remember 
that a quantification is but a subset of the power set of the system object-set.   
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Härtig's quantifier is a quantifier of two variables and two formulas, written Iwy (w) (y).  
This quantification asserts that the cardinality of two sets that make two functions true is equal:   

Iwy (w) (y) h (|{w | (w)}| = |{y | (y)}|) ∈Q M 

That is, the cardinality of the values of w that make (w) true is the same as the cardinality of 
the values of y that make (y) true.   

Rescher’s quantifier is written Jwy (w) (y), and asserts |{w | (w)}| [ |{y | (y)}|, that is:   

Jwy (w) (y) h (|{w | (w)}| [ |{y | (y)}|) ∈Q M 

These quantifications can be written with the following more general quantifiers:  ∀, ∃ and ι, 
where ‘∀’ is the universal quantifier, ‘∃’ is the existential quantifier, and ‘ι’ designates “that” or 
“that one,” used when there is only one object identified.  Using these quantifiers, the above two 
quantifiers can be written as:   

Härtig's quantifier:  ιM ∀w∃ ∀y∃ (w) (y) h (|{w | (w)}| = |{y | (y)}|) ∈ι
M

 

Rescher’s quantifier:  ιM ∀w∃ ∀y∃ (w) (y) h (|{w | (w)}| [ |{y | (y)}|) ∈ι
M

 

These statements can be simplified if we had a class quantifier.  Let ŵ and ŷ be the 
quantifiers that designate the classes that make a predicate true; for example, the predicate 
ŵŷM(w,y).  ŵ and ŷ designate the classes of all components that make M(w,y) true.  Let ŵ,ŷ∈Q

 
, 

and w,y∈M, then the above statements can be written as follows:   

Härtig's quantifier:  ŵŷ (w) (y) h (|{w | (w)}| = |{y | (y)}|) ∈Q M 

Rescher’s quantifier:  ŵŷ (w) (y) h (|{w | (w)}| [ |{y | (y)}|) ∈Q M 

That is, ŵ and ŷ designate the classes of objects that are elements of M.  When, as with the 
Härtig's and Rescher’s quantifiers, a class may be frequently identified, then a specific quantifier 
may be appropriate as with I and J which replace the classes ŵ and ŷ.   

For ATIS, various quantifiers may be developed, in particular, for the Behavioral Affect 
Relation Qualifiers.  Whereas the qualifiers define the system activity for a specific property, the 
quantifiers define the associated relation; that is, the set of all components that make the 
quantification true with respect to a specific object-set.  For ATIS, the generalized quantifier is 
defined as:  Ax1x2…xn[ (x1) (x2)… (xn)].   
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For example, consider the Behavioral Affect Relation Qualifier ‘Control’ that defines the 
elements of the affect relation A

M 
.  This qualifier is defined by the quantifier 

AC(x1,y1)(x2,y2)…(xn,yn) 1(x1,y1) 2( x2,y2)… n(xn,yn); and, for four components, asserts:   

AC(x1,y1)(x2,y2) 1(x1,y1) 2( x2,y2) h ({(x1,y1) | 1(x1,y1)} 4 {( x2,y2) | 2( x2,y2)}∈A
M

∈A) 

In general, we have the following quantifier, where X is any system qualifier:   

 

ATIS Quantifier:    

AX(x1,y1)…(xn,yn) 1(x1,y1)… n(xn,yn) h [{(x1,y1) | 1(x1,y1)} 4 … 4 {( xn,yn) | n( xn,yn)} ∈A
M

∈A] 

 

This can be written more concisely as:  AX4{(xi,yi) | i(xi,yi)}i=1,…,n}∈A
M

∈A; or if this 
quantifier has been defined as representing only a specific relation, then AXM(x,y) would represent 
the class of all components that make M(x,y) true.   

Now, if the predicate M(x,y) is a true statement in M, then we say that M is a model of 
M(x,y), and write M ÑM(x,y).  Let U

M
 be the universe of all statements that are true in a model, 

M, then ∀M(x,y)∈U
M

[M ÑM(x,y)].   

Generalizing this to define the ATIS Theory Model, we have a theory-model production of 
the form:   

V1, V2, ..., Vn ~ W; where ‘V1’, ‘V2’, ..., ‘Vn’ are atis-Properties, atis-Axioms, or atis-
Statements derived from the atis-Axioms, and ‘W’ is an atis-Object that occurs in at least one of V1, 
V2, ..., Vn or is derived therefrom by an application of Modus Ponens or Universal Generalization.  
In such a theory-model production, V1, V2, ..., Vn is the model and W is the theory of the 
production.   

As a result of this logical language, specific ATIS Quantifiers will define specific affect 
relations.  When the affect relations are defined, then the system can be searched for those specific 
relations, thus identifying the system structure.  When a threshold measure has been reached, then 
that affect relation will identify specific system properties.  (Threshold measure is the measure 
identified as the minimum affect relation cardinality required for recognition of the affect relation.)   
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Another advantage of this quantifier for ATIS is that now; for example, an education system 
can be analyzed in terms of all of the Command qualifiers for all affect relations, or all of the 
Compact Properties, etc.  These quantifiers will provide a measure of these various properties for 
the system rather than for each affect relation individually.  So the ATIS Quantifiers can be used to 
define affect relations, or they can be used to analyze various affect relations for similar 
characterizations.   

With the above discussion, we now have a formal logic defined as follows:   

Formal Logic =df A formal language that contains— 

(1) Symbols,  
(2) Well-formed formulas derived from the symbols as determined by formation rules,  
(3) Axioms that are selected well-formed formulas, and  
(4) Transformation rules, normally consisting of two:  Modus Ponens and Generalization.   

The Predicate Calculus can be either first-order or higher-order logic.   

In first-order logic, quantification covers only individual elements (components) of a 
specific type or class; that is, only elements of a well-defined set (class) are considered.  First-order 
logic results in verifying properties of a class or subclass of elements.   

In second-order logic, quantification covers predicates.  Second-order logic results in 
verifying properties of a class or subclass of predicates.   

In higher-order logic, quantification covers predicate formulas.  Higher-order logic results in 
verifying properties of a class or subclass of predicate formulas.   

Whereas the Sentential and Predicate Calculi provide the logical foundation of the empirical 
sciences, such application must be done with care when extending that application to ATIS.  In 
fact, however, the logic required for ATIS is less complex than that required for mathematics and 
the mathematical sciences, at least initially.  The reason is that mathematics and the mathematical 
sciences must consider distinctions between “x’s” that represent “unknown” and “variable” 
elements.  The “unknown” uses are referred to as the “free” occurrences of x, and the “variable” 
uses are referred to as the “bound” occurrences of x.  In ATIS, only “bound” occurrences of x will 
be required.   
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For this reason, many of the problems encountered by mathematicians relating to the 
Predicate Calculus will not be a problem in the logical analyses of ATIS.  The reason is that, as 
noted above, ATIS does not consider any statement with free occurrences of x; that is, there are no 
“unknowns.”  As will be seen, statements with “unknowns” in ATIS are non-sense.  For ATIS all 
uses of x are bound; that is, they are variables.   

In ATIS problems are not being solved in which an unknown is being sought, but what is 
being sought are the system relations that are true for all described components of a system.  The 
problem with seeking unknowns in the type of statements that are being considered is that it is 
difficult, if not impossible, to assign any proper meaning to such statements.   

For example, the following is a bound occurrence of x:   

For x c S,  

∀x(I
P

↑(x) q SF  ↓(x))  

However, ‘I
P

↑(x)’ may or may not make sense when x is an element of just any 
unknown system, or even within a known system.  That is, let ‘I

P
↑(x)’ be a translation of “x 

is the increasing input of the toput subsystem.”  While this English sentence is grammatically 
correct and has a recognizable meaning, its meaning within ATIS is highly suspect, since the 
x is now an unknown, or simply fanciful.  Even if x can be construed as the input of a toput 
subsystem, x cannot be construed as “increasing” since it is but a single component.  Or if it 
can be construed as increasing, then there are other assumptions of which we are not 
informed.  x in this context is considered an unknown, or is a free occurrence of x.  It is a 
situation in which we would have to determine under what conditions and in which systems 
this statement would have a proper meaning.  Such statements are precluded from ATIS 
analyses.   

In order to be selective of our logic, its application must be understood.  The types of 
systems with which we are concerned are Intentional Systems.  Intentional Systems are ones that are 
goal-oriented, or that have “intended” outcomes.  For the analyst of general systems, an Intentional 
System is one that is predictable within certain parameters; that is, its behavior is predictable under 
certain system component relations.  The challenge is to determine which system component 
relations are predictable and what outcomes are obtained as a result of those relations.   

The problem of selecting a specific logic on which to base an analysis of general systems is 
that such systems are Complex Systems.  Complex Systems are systems that are defined by large 
numbers of components with a large number of heterarchy connections (affect relations) that 
determine the behavior of the system.   
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In general, it has been concluded that such systems cannot be analyzed with linear logics, 
such as logics founded on implication and Modus Ponens, as are the Sentential and Predicate 
Calculi.  However, such conclusions have been founded on the beliefs that systems cannot be 
analyzed that have multiple relations.  Such is not the case.   

Yi Lin6 has defined systems with multiple relations.  It is just such systems that are required 
for an analysis of ATIS.  Further, however, the assumption that the ATIS Predicate Calculus is 
linear is misplaced.  By reference only, it is recognized that an APT&C analysis has been 
incorporated into the evaluation of this systems theory, an analysis that is non-linear.   

What is required for now is a formal method to analyze general systems, a symbolic logic 
and mathematical logic that formally express the properties and relations of a system such as system 
behavior, system structure, dynamic states, morphisms, etc.   

The Sentential Calculus is frequently defined in terms of truth tables that provide a truth-
functional analysis of statements.  However, since ATIS is defined as an Axiomatic-General 
Systems Behavioral Theory, we will approach both the Sentential Calculus and the Predicate 
Calculus as axiomatic theories.  Such an approach lends itself to clear statements of theorems and 
proofs.  Further, such axiomatic logics are required since truth-table logics cannot address 
statements in general, and the complex statements of ATIS, in particular.   

 

                                                 
6 Lin, Yi (1999).  General Systems Theory:  A Mathematical Approach.  Kluwer Academic/Plenum Publishers, NY.   
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Symbolic Logic 

Symbolic logic is a tool designed for scientific reasoning.  In particular, it is a tool designed 
for ATIS reasoning, and also for educology reasoning; such reasoning required for a proper 
analysis of an Education Systems Theory (EST).   

It is through the use of symbolic logic that theories are made precise and explicated.  The 
main reason for using symbolic logic is that it is a means of obtaining precise definitions for the 
logical consequence of one statement from another.  The main advantage of a formal logic is in 
being able to prove statements about a theory.   

One of the greatest advantages of a formal logic is that it provides a precise definition for 
determining when one statement is a logical consequence of another.   

The logical consequence of one statement from another is obtained by a sequence of well-
defined statements such that each statement is known to be valid; that is, is an axiom, is an 
assumption or is derived from previous statements of the sequence according to specific rules of 
inference.   

Valid statements are only those that are axioms or are derived only from axioms.  Rules of 
inference are restricted to Modus Ponens and Universal Generalization.   

The ATIS Sentential Calculus is a theory of statement formulas in which the statements are 
translations of sentences within ATIS.  For ATIS, a statement is a declarative sentence that relates 
exclusively to system components, relations or properties of ATIS.  While the Sentential Calculus 
herein considered may be equivalent to that used for mathematics and the mathematical sciences, it 
is important to note that the extended logic herein considered is that developed specifically for 
ATIS, and is not intended to be a “mathematical logic” for mathematicians, but it is a mathematical 
logic designed specifically for ATIS.   

Statements will be expressed by capital letters; e.g., “P,” “Q,” etc., and are translations of 
their English sentences “A” and “B,” respectively.  All statement functions of the theory are derived 
from only two undefined functions:  ‘.’ and ‘~’, which are read “and” and “not,” respectively.   

Therefore, ‘P . Q’ is read “P and Q,” and is a translation of the English sentence “A and B”; 
and ‘~P’ is read “not P,” and is a translation of the negation of the English sentence “A.”  While we 
will read ‘~P’ as “not P,” the English sentence may take several forms depending on what is 
required to assert the negation of “A.”   
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A statement formula is a string of statements combined with . and ~.  ‘.’ and ‘~’ are the 
first two functions of the Sentential Calculus:   

(1) P . Q 

(2) ~P 

While these functions are undefined, they will be interpreted as having “truth values” defined 
by the following “truth-value tables.”  While the values are commonly thought of as “True” or 
“False,” in fact they are but assigned values with no relation to “truth.”  This will be emphasized in 
the following tables by using ‘S’ for “true” and ‘z’ for “false.”  The truth table simply presents the 
possible combinations of ‘S’ and ‘z’.   

Table 1:  Truth table for the operation ‘.’ 

P Q P . Q 

S S S S S 
S z S z z 

z S z z S 

z z z z z 
 

Table 2:  Truth table for the operation ‘~’ 

P ~P 

S z 
z S 

 

Having demonstrated that the values of these operations are dependent only on the form of 
the statement, we will now revert to the commonly used notation of “T” and “F” for the values of 
the “truth” tables.  As demonstrated in Tables 1 and 2, the operation ‘.’ takes the value ‘S’ (or “T”) 
only when both P and Q are S; and the operation ‘~’ takes the value that is the alternative to P.   

By convention, ‘P . Q’ may be written as ‘PQ’.   
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‘P - Q’ (“P or Q”—inclusive “or”; i.e., and/or), ‘P I Q’ (“P or Q”—exclusive “or”; i.e., not 
both), ‘P q Q’ (“P implies Q” or “If P then Q”), and ‘P h Q’ (“P if and only if Q” or “P is 
equivalent to Q”) are defined as follows:   

(3) P - Q =df ~(~P~Q)      
(4) P I Q =df ~(~P~Q) . ~(PQ)  
(5) P q Q =df ~(P~Q) 
(6) P h Q =df ~(P~Q) . ~(~PQ) =df (P q Q)(Q q P)  

These six functions are the ones by which the Sentential Calculus is explicated.   

Since implication, q, will be a very important function of the ATIS Sentential Calculus, its 
interpretation will be further considered.  The function ‘P q Q’ may be read in any one of the 
following ways, all of which are equivalent:   

Q is a necessary condition for P,  
P is a sufficient condition for Q, 
Q if P,  
P only if Q,  
P implies Q, and  
If P then Q.   

Consider a list of statements, P1, P2, …, Pn.  Combine these statements by the use of ‘.’ and 
‘~’ in any manner desired, and call the result ‘Γ’.  As a result of this construction of Γ, Γ will be 
called a statement formula.  A statement formula that is written using only ‘.’ and ‘~’ will be 
defined as being in “standard form.”  The purpose of the Sentential Calculus is to determine when a 
statement formula is valid, and validity will be determined when the statement formula is “true.”   

One means for determining when statement formulae are true, is by the use of “truth tables.”  
Truth tables can assist in determining when a statement formula is true regardless of the meaning of 
the statements that make up the formula.  That is, in general, if the truth of the statements of a 
formula is unknown, then the truth of the formula cannot be determined.   

However, statement formula validity can be determined, regardless of the validity of the 
statements, when the statement formula has a certain structure.  For example, the statement formula 
“~PP” is always false and ~(~PP) is always true regardless of the validity of P.  Truth tables can 
assist in determining under what conditions a statement formula is valid in the Sentential Calculus.  
(See most any basic text on logic for a discussion of truth tables.)   
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Axiomatic Sentential Calculus 

Whereas truth tables are convenient for determining the validity of statement formulas, such 
tables cannot be generalized to all statements.  To date, only an axiomatic method is known that is 
able to obtain validations of general statements.  As a transition to the axioms required for 
validation of general statements, we will first consider a subset of those axioms, the truth-value 
axioms.  These axioms will provide an excellent transition to axiomatic logic, since these axioms 
will produce those statements considered earlier, the statement formulae that can be validated by 
use of a truth table, and, therefore can be easily validated by two methods—truth tables and axioms.   

In general, the axiomatic definition of valid statements is obtained by the following process:  
(1) Certain selected statements are called ‘axioms’ (and their selection may be somewhat arbitrary 
and may be modified to achieve certain objectives); (2) A transformation rule is selected, normally 
Modus Ponens (although other transformation rules are possible; Generalization or Modus Talens); 
and (3) ‘Valid statements’ are those statements that are either axioms or can be derived from two or 
more axioms by successive applications of Modus Ponens.   

It is worth mentioning again that only the form of the statements and not their meaning 
determines valid statements.   

There are three axioms of the Truth-Value Sentential Calculus and one logical rule.7   

Let ‘P’, ‘Q’, and ‘R’ be statements of the theory, then— 

The logical rule is Modus Ponens:  P, P ⊃ Q d Q; and the axiom schemas are:   

(1) P q PP 
(2) PQ q P 
(3) P q Q .q. ~(QR) q ~(RP) 

There are an infinite number of statements that will comprise the truth-value axioms, 
however, all axioms will be of one of the above three general forms, the axiom schemas.  Further, 
all theorems of the Truth-Value Sentential Calculus can be derived from these three axioms and 
Modus Ponens.   

A theorem will take the form:  P1, P2, …, Pn d Q, where the P’s are statements and Q is an 
axiom, or Q is one of the P’s, or Q is derived from the P’s by repeated applications of Modus 
Ponens.   

                                                 
7 Much of the logical foundations in this report are a result of studies derived from Logic for Mathematicians by J. 
Barkley Rosser, McGraw-Hill Book Company, Inc., New York (1953).  The logical development contained herein is 
an extension of that work.   
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‘d’ is read “yield”, or in the case when we have only ‘d Q’ it is read “yields Q.”   

The theorem P1, P2, …, Pn d Q indicates that there is a sequence of statements, S1, S2, …, Sm, 
called the proof of the theorem, such that Sm is Q and for each Si, either:   

(1) Si is an axiom,  
(2) Si is a P; i.e., an assumption,  
(3) Si is the same as some earlier Sj, or  
(4) Si is derived from two earlier S’s by Modus Ponens.   

The sequence S1, S2, …, Sm is a proof within the Symbolic Logic so that Q is logically 
derived from the assumptions P1, P2, …, Pn.   

The following theorems are readily provable concerning d:   

Theorem.  If P1, …, Pn d Q, then P1, …, Pn, R1, …, Rm d Q.   

Proof:  Let S1, …, Ss be the proof of P1, …, Pn d Q where Ss is Q.  Clearly that same 
sequence will yield Q regardless of any additional assumptions.   

Theorem.  If P1, …, Pn d Q1 and Q1, …, Qm d R, then P1, …, Pn, Q2, …, Qm d R.   

Theorem.  If P1, …, Pn d Q1, R1, …, Rm d Q2, and Q1, …, Qq d S, then  

P1, …, Pn, R1, …, Rm, Q3, …, Qq d S.   

Theorem.  If d Q1 and Q1, …, Qm d R, then Q2, …, Qm d R.   

Theorem.  If d Q1, d Q2, …, d Qm and Q1, …, Qm d R, then d R.   

 

Since our main concern is to provide the means to explicate ATIS, the Sentential Calculus 
will not be further explicated.  The following List of Logical Schemas is provided to facilitate the 
explication of the theories.  This list is not exhaustive, but does represent those schemas that lend 
themselves to a fruitful explication of the theories.  Following this list, the schemas will be used to 
demonstrate the value of such a symbolic logic by providing proofs of theorems.  It is noted that 
technically these schemas are not actually part of the Sentential Calculus but are part of the 
metatheory, the Meta-Sentential Calculus.  They are statements about the calculus that define the 
form or schemas that the theorems of the theory actually take.   
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List of Logical Schemas 

The following list of the logical schemas is provided to facilitate the proof of theorems.   

The “System Construction Theorems” (SCTs), derived directly from the axioms of the 
Sentential Calculus and the intuitive creativity of a researcher or interpreter, provide a means of 
developing the connectedness of a system or of determining predictive outcomes.  These should 
prove important in developing the system topology.  The significance and use of SCTs will be 
clarified before presenting the logical schemas.   

 

 

Significance of SCTs 

System Construction Theorems provide the means to develop, enhance or further the 
explication of a theory.  The significance is that they provide additional statements than what are 
found in the assumptions.  Since they are statements of the theory, however, they are valid 
statements, they are not just any statements whimsically selected.   

They may, however, be statements that are intuitively derived and thereby declared to be 
valid statements of the theory.  As an initial example, however, consider the case where the derived 
statement is an axiom.  As an axiom, it is a valid statement of the theory.  Consider Logical Schema 
3:  P q R d P q (Q q R).  Let Q be Axiom 105 of SIGGS, “If centrality increases, then toput 
decreases.”  Then, regardless of what P and R represent, the following is valid:   

P q R d P q (“If centrality increases, then toput decreases” q R), where P and R are 
statements of the theory and P q R is assumed to be true.  For example:   

Let P = “System complete connectivity increases”; and R = “System feedin increases.”  
Then, P q R is a statement of Axiom 100; and, therefore P q R is true.  Then, from our theorem we 
have:   

“System complete connectivity increases” q “System feedin increases” d  

“System complete connectivity increases” q (“If centrality increases, then toput decreases” q 
“System feedin increases”).   

The conclusion of this statement is equivalent to the following:   

“System complete connectivity increases” q (“centrality decreases or toput decreases” q 
“System feedin increases”).   

It is probably clear that this is a non-obvious theorem; hence the value of the formal logic is 
established.  But, what does it tell us?   
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This theorem provides a means to control a system.  If the target system has complete 
connectivity increasing and system feedin increasing then the assumption of the theorem is 
satisfied.  Now, assume that the target system is a terrorist system and that it is desired to decrease 
the complete connectivity.  One way to accomplish this is to decrease toput and feedin.  By 
decreasing toput and feedin under these conditions, system complete connectivity will decrease.  
Further, decreasing toput decreases feedin.  Therefore, only one factor, toput, has to be controlled in 
order to achieve the objective of decreasing complete connectivity.   

This analysis demonstrates several points.  First, there are numerous non-obvious theorems 
that can be derived from a logical axiomatic analysis of the theory.  Second, some of the outcomes, 
as with the above theorem, are counter-intuitive.  In this case, the measure of complete connectivity 
is dependent on the potential complexity of the system, such complexity being degraded when toput 
is reduced.  Third, the SCTs provide a fruitful means to analyze a system, but may require the 
intuitive skill of the analyst.  On the other hand, where the logic is required for applications similar 
to SimEd, by defining certain “replacement” or “substitution” rules that will allow for selection of 
various properties or newly acquired data such logic can be programmed.  These rules will probably 
have to be developed by an analyst who has a grasp of the pragmatic content of the theory.   
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Logical Schemas 

 

Logical Schema 0:  P q Q, Q q R d P q R   (Transitive Property of q) 

Logical Schema 1:  P q Q, R q Q d P ∨ R q Q 

Logical Schema 2:  P q Q, R q S d PR q QS 

Logical Schema 3:  P q R d P q (Q q R)  (System Construction Theorem Schema) 

Logical Schema 4:  P q Q, P q R d P q QR 

Logical Schema 5:  d Q q P .≡. ∼P q ∼Q  

Logical Schema 6:  If  P q Q, then P d Q; and If  P d Q, then P q Q :≡:  

     P d Q  .≡.  d P q Q    
“P d Q .q. P q Q” is the Deduction Theorem. 

Logical Schema 7:  d ∼(∼PP)  

Logical Schema 8:  d ∼∼P .≡. P  

Logical Schema 9:  d ∼P ∨ P  

Logical Schema 10:  P d Q q PQ    (System Construction Theorem Schema) 

Logical Schema 11:  ∼(QR) d R q ∼Q    

Logical Schema 12:  P q Q d PR q QR    (System Construction Theorem Schema) 

Logical Schema 13:  R q S d PR q PS    (System Construction Theorem Schema) 

Logical Schema 14:  PQ q Ρ d P q (Q q R)   (System Construction Theorem Schema) 

Logical Schema 15:  d PQ q R .≡. P q (Q q R) 

Logical Schema 16:  P q ∼Q d P q (Q q R)  (System Construction Theorem Schema) 

Logical Schema 17:  P q ∼R d P q ∼(QR)  (System Construction Theorem Schema) 

Logical Schema 18:  P q Q, P q ∼R d P q ∼(Q q R)  

Logical Schema 19:  P, P q Q d Q      (Modus Ponens) 

Logical Schema 20:  ~Q, P q Q d ~P      (Modus Talens) 
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The ATIS Predicate Calculus 

While the Sentential Calculus has been presented so as to demonstrate the usefulness of a 
formal logic, the ATIS Predicate Calculus will be only briefly presented with what is required to 
understand its application to the analysis of the target theories.  Unlike the Sentential Calculus, 
however, it is important to note that this predicate calculus is distinctly different from that required 
for mathematics or the mathematical sciences.  Without going into any great discussion, the reason 
is that for ATIS only bound occurrences of x are considered since free occurrences do not have any 
apparent meaning within ATIS.   

It was previously stated that the difference between the Sentential and Predicate Calculi was 
that the Sentential Calculus is concerned with the form of the aggregate statement with no concern 
of what is contained within the statement, whereas the Predicate Calculus is concerned with the 
logic of predicates; that is, statements and their constituent parts, as related to quantifiers—normally 
the universal and existential quantifiers.  This extension will now be considered.   

To make the transition from the Predicate Calculus required for the mathematical sciences 
and that required for ATIS, we will first consider the predicate notation.  The predicate notation 
will take the form of a function; e.g., P(x), where ‘x’ is an “unknown.”  If we can prove that P(x) is 
true for the unknown ‘x’, then we have d P(x).  If we have d P(x) then we can replace ‘x’ with a 
variable and will conclude:  d ∀xP(x).  For ATIS, it is assumed that all predicates are bound, and, 
therefore, all occurrences of x are variables and the truth-value of all predicate functions can be 
determined.  Therefore, with respect to any occurrence of x, the task is to assert d ∀xP(x) and 
determine if a proof exists.   

Since Alonzo Church, in 1936, proved that there is no decision procedure for the Predicate 
Calculus, then the only affirmative conclusion that is possible concerning d ∀xP(x), with respect to 
the Predicate Calculus, is that it is true.  If no such affirmative conclusion can be found, then 
nothing more can be said concerning the validity of the statement within the theory.  Further, the 
conclusion is even stronger.  Church proved that there is no decision procedure regardless of what 
axioms are considered.8   

This is great news for the logician and for any researcher or analyst who is attempting to 
evaluate ATIS or an EST.  What Church has proved is that there will always be a need for the 
researcher and analyst, since the Predicate Calculus, and the ATIS Predicate Calculus, in 
particular, has no decision procedure, and, therefore, cannot be fully programmed.  It is not asserted 
that the ATIS Predicate Calculus cannot be partially programmed, because it can, but it cannot be 
completely programmed.  The part that can be programmed, as seen below, is that part that results 
from the axioms that define the ATIS Sentential Calculus.   
                                                 
8 This is not to say that when empirically tested as a hypothesis the assertion may be shown to be “false.”  That is a 
different matter.  However, no such conclusion can be derived from the axioms.   
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This point is worth elaborating.  The scope of the programmable theory must be determined, 
since such programs will clearly make the theory and any of its proprietary software products more 
appealing to users.  As reflected by the extensive list of theorems that can be derived from the ATIS 
Sentential Calculus, numbering in the tens-of-thousands, and the numerous Theorem Schemas cited 
previously, it is seen that a very fruitful analysis of a system can be obtained.   

Further, it is proposed that utilizing data mining technologies will extend the value of this 
fruitful analysis even further.  That is, the theory software can be used as an interpreter of the data 
mining structured outcomes, thus enhancing the time-sensitive results required in a terrorist 
environment, and possibly in an educational environment.  With this technology, it is no longer 
required that one must wait for a pattern to be determined by the data mining, but that the theory 
analysis will enhance the ability of the data mining technology to recognize patterns and predicted 
terrorist behavior or targets much earlier than utilizing the data mining technology alone.   

That said, it must also be recognized that when evaluating a specific system, the logic is only 
semi-decidable.  That is, an analyst can affirmatively determine, within the theory, that a theorem is 
true, but cannot, under any circumstances, prove that it is false.  The reason for this is three-fold:  
(1) As soon as an empirical system is recognized, the problem for the analyst reverts to 
considerations within the ATIS Predicate Calculus; (2) Church has proved that such 
considerations are only semi-decidable; and (3) The reason that such problems considered in an 
empirical system are only semi-decidable is that one never knows if all possibilities have actually 
been considered in the proof.  Systems, especially behavioral systems, are complex.  This must be 
recognized and recognized as something positive.  That is, the researcher and analyst have some 
very difficult tasks confronting them.   

So, is the analyst without recourse?  Not at all.  Creative proofs from outside the theory are 
possible.  If a reasoned argument can be found that can be construed as part of the logic of the meta-
theory, then a particular theorem can be cited as being invalid.  Once the theorem has been proved 
in the meta-theory as being invalid, one is then justified by claiming that the theorem is invalid 
within the theory.  The significance of this is that the results of this proof can then be inserted into 
the theory as though it had been proved within the theory.   

One is cautioned not to insert theorems directly into a computer program that has been 
developed as a model of the theory.  However, that precaution is with respect to the ATIS 
Sentential Calculus.  The ATIS Predicate Calculus is an entirely different matter.  Whereas the 
theorems of the ATIS Sentential Calculus can be obtained directly from the axioms and, therefore, 
do not warrant the arbitrary insertion of theorems, the same cannot be said for the ATIS Predicate 
Calculus.   
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Further, there will be additional work for the researcher and analyst once the initial logic has 
been developed and implemented for theory model applications.  There are additional analyses that 
can be made with respect to empirical systems.  It is intended that the structural properties of a 
system can be recognized as the topology of the system, and that the power of mathematical 
topology can be modified, as the predicate calculus has been, in such a way that the power of a 
modified mathematical topology can be used to assist in the analysis of a system.  Such analyses 
may also have to be performed by a researcher or analyst directly with little or no reliance on a 
computer program.  These results also will have to be manually inserted into any computer program 
that has been designed for a particular system.   

What this simply means is that researchers and analysts of behavioral systems will always 
have a job.  To this researcher, that is something to look forward to.   

As noted previously, due to the nature of the target theories, there will be no need to 
distinguish between “free” and “bound” occurrences of ‘x’, since, without any loss of generality, all 
occurrences of ‘x’ are considered to be bound.  In view of this, we have the following axioms:   

(1) P q PP 
(2) PQ q P 
(3) P q Q :-: ~(QR) q ~(RP) 

(4) ∀x(P q Q) :q: ∀xP q ∀xQ 

(5) P q ∀xP 

(6) ∀xP(x,y) q P(y,y) 

It should be recognized that the first three axioms are simply taken from the Sentential 
Calculus; that is, all such resulting theorems are still valid in the Predicate Calculus.   

As seen from the axioms, the only quantifier is the universal quantifier.  The existential 
quantifier will be defined in terms of the universal:   

∃xP =df ~∀x ~P 

From this definition, we have the following equivalences:   

d ∃xP h ~∀x ~P  

d ∀xP h ~∃x ~P 

d ~∃xP h ∀x ~P 

d ~∀xP h ∃x ~P 
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There are special conditions for ∃ for which additional notations are desired.  These are the 
conditions in which there is exactly one x for which P is true and when there are n x’s for which P 
is true.  These notations are as follows:   

∃1x (x) denotes that there is only one x for which (x) is true; and  

∃n (x) denotes that there are exactly n x’s for which (x) is true.   

In addition to the two quantifiers, ∀ and ∃, there are two additional quantifiers, one that will 
be used to specify a single component and one that will specify a class of components.  These 
quantifiers are the descriptor quantifier, ι, and the class quantifier, ŵ.  ‘ιxP(x)’ is read, “the x such 
that P(x)”; and ‘ŵ (w)’ is read “the class of w determined by (w).”  These are defined as follows:   

ιx (x) =df ∃1x (x); and  

ŵ (w) =df ια∀w(wcα h (w)) 

‘ιx (x)’ is the name of the unique object that makes (x) true.   

An important clarification needs to be made concerning the meaning of ‘quantifier’.  A 
logical quantifier designates a qualification of a class by indicating the logical quantity; that is, the 
specific components to which the qualification applies.  ‘P’ or ‘ (x)’ is the scope of the 
quantification; that is, the scope of what is qualified.  This will be a frequently used concept in the 
analysis of systems.  The ‘Logistic Qualifiers’ are those predicates that will be used to quantify a 
specific set.  For example, Toput becomes Input as the result of quantifying Toput with respect to 
the Logistic Qualifiers.  This system transition function is defined as follows:   

σ:(T
p
 × L i=1:n( i(wcT

p
)) → I

p
 ) = ŵIp (wTp

) 

where ‘i=1:n’ designates “i varies from 1 to n,” and ‘ i(wcT
p
)’ is a qualifying statement in L 

with respect to w in T
p
.   

‘ŵIp (wTp
)’ designates the Input Class determined by the Toput Class qualified by the 

(w)’s in L that make (wTp
) true.   

An equivalent notation for ŵP is {w | P}, which is frequently used in mathematics.   



ATIS Report 2-ER – 32 
 

© Copyright 1996 to 2005 by Kenneth R. Thompson, Systems Predictive Technologies, 2096 Elmore Avenue, Columbus, Ohio 43224-5019; 

Site:  www.Raven58Technologies.com.   
All rights reserved.  Intellectual materials contained herein may not be copied or summarized without written permission from the author. 

Theory Building 

In the preceding sections, the need and requirements for an axiomatic logic have been 
presented.  In that discussion the problems relating to theory building that relies on induction, 
hypothetico-deductive and grounded methodologies were discussed.  Now we will consider some 
specific concerns relating to theory building itself.  What follows will be a discussion of several 
specific points and how to determine if theory building is actually being pursued, and if it is, what 
one must look for in that theory building and how to validate the theory once it is developed.   

First, we will consider how to determine if the validation of a hypothesis is theoretically 
sound.  The basic test is simply to ask the following question:   

Was the hypothesis derived from a theory that is consistent, comprehensive and 
complete; and, if so, is the theory axiomatic?   

With respect to the requirement that the theory be axiomatic, it is simply a recognition that 
only axiomatic theories have been found to provide the rigorous analyses required to obtain 
confidence in the theory results.  If an axiomatic theory cannot be obtained, then the results can 
always be questioned either with respect to the validation process or with respect to the “underlying 
assumptions” that are not stated in the theory.  Descriptive and statistical-based theories can never 
be individually predictive and any results can always be questioned with respect to the descriptive 
theory, and statistical-based theories, by definition, can never be individually predictive.   

Put another way, simply ask yourself:   

 Was the hypothesis derived from theory?  If so, what is it?   

Once the theory has been established, then the next question that needs to be addressed 
concerns the logical basis of the theory.  Most often it will be founded on a predicate calculus.  If 
so, then there are additional questions that relate to that logic.   

Any theorems that are derived from the predicate calculus are a result of the form of the 
theorems and not their content.  The theorems of the theory that are derived directly from the basic 
logic are true because of their logical structure, and not at all because of their content.   

In addition to theorems that are derived from the basic logic, there will be theorems that are 
derived from ATIS axioms.  Further, there will be theorems that are derived from the axioms 
obtained as a result of the specific empirical system being considered.  Axioms and theorems from 
the latter two will depend upon the meaning of the terms employed within the theory or system, and 
not due only to their logical structure.   
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Class Calculus 

Before considering the axioms of ATIS and how to develop axioms for specific systems, the 
axioms of the Predicate Calculus will be extended to include the Class Calculus.  For this 
extension, a more precise and formal development of the basic logic will be presented so that a clear 
definition of term, statement and formula can be obtained.   

Stratified statements determine classes.  However, for ATIS, the initial partitioning of the 
system components and the definition of the system affect relations determine the stratification.  
Affect relations are, by definition, one class or type higher than the system components, and there 
is, therefore, no confusion of types.   

A statement is determined by the following symbols:   

~  .  ∀  ι  ^  c    “variables:” x1  x2  …  xn  x  y  α  β     “statements:”  P  Q  
R  (x)  (y)  (ιyQ)  P (x,y)  P (y,y) 

 

Following are the definitions of ‘term’, ‘statement’ and ‘formula’.  Due to their use in ATIS, 
all variables are bound.   

(1) term =df  
(i) x1  x2  …  xn  x  y 

(ii) ιxP 

(iii) ŵP 

(2) statement =df  
(i) AcB, where ‘A’ and ‘B’ are terms, and ‘A’ is a component and ‘B’ is a 

class, since only sentences concerned exclusively with classes are 
considered to be statements 

(ii) ∀xP, where ‘x’ is a variable and ‘P ’ is a statement  

(iii) ~P, where ‘P ’ is a statement 

(iv) P .Q, where ‘P ’ and ‘Q ’ are statements 

(3) formula =df  
(i) S, where ‘S’ is comprised of a sequence of statements constructed with 

‘~’ and ‘.’  

(4) α = β  =df ∀x(xcα h xcβ) =df α = β =df α =x β  
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‘P ’ is referred to as the scope of the quantifiers.    

 

Definition (4) defines equality of sets.  The last notation, α =x β, is very useful in ATIS.  
Due to the complexity of systems, it may be that various properties are defined with respect to the 
same set of components.  Rather than having to consider numerous sets, the properties can be 
defined with respect to a specific subset.  For example, one may wish to determine the behavior of a 
system with respect to various subsets.  Such can be designated as follows:  S =B V; S =C L; and S 
=D G.  Then an APT&C analysis can be performed on the following set:  ℓ = { V, L, G }.   

With the foregoing definitions, we now have the following axiom schemas extended from 
the Predicate Calculus to include the axiom schema for the Class Calculus, Axiom (12).   

Transformation Rule, Modus Ponens:  P , P q Q  d Q 

(1) P  q P P 

(2) P Q  q P 

(3) (P  q Q) - [~(Q R) q ~(RP )] 

(4) ∀x(P  q Q ) q (∀xP  q ∀xQ) 

(5) P  q ∀xP 

(6) ∀xP (x,y) q P (y,y) 

i. ∀x (x) q (y) 

(7) ∀x,y,z[(x = y) q (xcz q ycz)] 

(8) ∀x1,x2,…,xn(∀x (x) q (ιyQ ) 

(9) ∀x1,x2,…,xn[∀x(P  h Q ) q (ιxP  = ιxQ )] 

(10) ∀x1,x2,…,xn[ιx (x) = ιy (y)] 

i. ∀x1,x2,…,xn[ιxP  = ιyQ ] 

(11) ∀x1,x2,…,xn[∃1xP  q (∀x[ιxP  = x h P ])] 

i. ∀x1,x2,…,xn[∃1x (x) q (∀x[ιx (x) = x h (x)])] 

ii. ∀x1,x2,…,xn[∃1x (x) q (∀y[ιx (x) = y h (y)])] 

(12) ∃y∀x(xcy h P ) 
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Axiom Schemas (1) to (3) are the truth-value axioms of the Sentential Calculus.   

Axiom Schemas (4) to (6) allow for generalization from dP to d∀xP.   

Axiom Schema (6) provides for substitution of a value for a variable.   

Axiom Schema (7) allows for substitution of equivalent terms resulting from equality.   

Axiom Schemas (8) to (11) are the axiom schemas for ι.   

Axiom Schema (8) asserts that if (x) is true for all x, then ιyQ is the name of one of those 
objects.   

Axiom Schema (9) asserts that if P and Q are equivalent for all x, then ιxP and ιxQ are 
names of the same object.   

Axiom Schema (10) allows for change of variables.   

Axiom Schema (11) asserts that if there is a unique x that makes P true, then ιxP is that x.   

Axiom Schema (12) is the schema that introduces classes.  This axiom allows for the Set 
Calculus to be integrated into the formal theory.   

 

Relation Calculus 

For ATIS, we are concerned with attempting to use as many mathematical constructs as 
possible while clearly describing the desired system properties.   

While mathematics is frequently concerned with functions, for ATIS the concerns may be 
directed more toward relations.   

However, while functions are normally considered as being single-valued, many-valued 
functions are possible.  The relation ’x,x1/2÷ is a multi-valued function.  ’x,x<y÷ also is a multi-
valued function.  These are well-defined functions since the ordered pairs that define the functions 
are well-defined.  Whether or not these are considered functions or relations is not clear; that is, 
there does not seem to be any clear distinction between the two.  With ‘function’ being restricted to 
single-valued functions, these examples would be considered as relations.  One distinction has been 
that ‘function’ was restricted to relations that resulted in well-defined curves, whereas ‘relation’ 
would be for those statements that defined all other characterizations.  Thus, ’x,x1/2÷ would be a 
function, and ’x,x<y÷ would be a relation.   
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In ATIS, the distinction between ‘function’ and ‘relation’ will not be considered.  The only 
question is whether or not the appropriate mathematical construct clearly portrays the system 
characteristic being considered.  It appears as though most of the concerns for ATIS will be with 
respect to morphisms; that is, relational mappings.  Whether such mappings are ‘functions’ or 
‘relations’ is moot.  If a single-valued function is required, then such can be stated.  For purposes of 
analysis, morphisms or relations will be considered, since functions are a special type of relation.  
Further, where the “function notation” is used, it is not to be construed as restrictive.  Normally, it 
will probably designate a single-valued function, but such in this theory is not required.  Either the 
context or by definition, the type of function will be determined.   

The Relation Calculus for ATIS is concerned with the affect relations that define a system 
and the morphisms that characterize the properties of the system as derived from those affect 
relations.   

The Relation Calculus axiom schemas will be presented first.  This will complete the 
presentation of the formal logic.   

Following the presentation of the formal logic, the content required for a General System 
Theory will be introduced.  First, the axiom that asserts the existence of a General System will be 
introduced.  Then the axioms that establish the empirical systems that are to be analyzed and the 
criteria for such analysis will be given.   

We have already introduced the notation that will be used to identify a class or set of objects, 
or components, ŵ (w).  Now the characterization of those components will be discussed.   

Whereas x identifies a single component within the set, it may be that we wish to identify an 
object that consists of two or more components.  The following notations will be used to identify 
such sets.   

‘{x, y}’ identifies a component of a set that consists of  two single components.   

If it is desired to specify that the set consists only of binary-components, then the following 
notation will so indicate:  ŵ2 (w).  This notation designates that the class or set of components 
consists only of sets each of which contains two single components.   

Hence, ‘ŵ2 (w)’ designates a family of binary sets.   

By extension, ‘ŵn (w)’ designates a family of sets, each member of which contains n 
components; that is, {x1, x2, …, xn}icw.   

For affect relations, an additional type of set will be required.  This set will contain binary-
components and a set that contains one of the binary-components in a unary-component set.  That 
is, the set will be configured by the following representation:   

{{x}, {x, y}} 
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where each unary-, binary-component set is included and no other sets are included.  Where there is 
no confusion, this notation is frequently represented by the ordered pair:  (x,y).   

For this set, the class quantifier will be represented as:  ŵ1|2 (w).   

By extension, ‘ŵ1|…n-1|n (w)’ designates a family of sets that include all and only those 
ordered subsets of the largest set.  For n = 4, the family of sets would be characterized by 
components of the form:  {{a}, {a,b}, {a,b,c}, {a,b,c,d}} = (a,b,c,d), an ordered 4-tuple.   

With the foregoing definitions, we now have the following axiom schema for the Relation 
Calculus, Axiom (13), which introduces relations.   

Axiom (13)  ∃z∀x,y({x,y}cz . {x}cz h R ) 

The following axiom schemas provide for substitution within and identification of relations.   

Axiom (14)  ∀xR (x) q R(ιyQ) 

Axiom (15)  ∀x(R  h Q ) q (ιxR  h ιxQ) 

Axiom (16)  ι(x,y)R (x,y) = ι(p,q)R (p,q))  

Axiom Schema (14) asserts that if R (x) is true for all x, then ιyQ is the name of one of those 
relations.   

Axiom Schema (15) asserts that if relations R and Q are equivalent for all x, then ιxR and 
ixQ are names of the same relation.  This is a critical axiom for determining morphisms.   

Axiom Schema (16) allows for change of variables.   

 

ATIS Calculus 

In the preceding sections, the formal logic has been established.   

Now, the calculus must be developed that begins to provide the substance for the desired 
ATIS theories.  These theories are descriptive of what will be called General Systems.  However, 
the first axiom will introduce the characteristics of ‘System’.   

The development of the calculus that results in the empirical theory is dependent upon the 
concept of an Options Set.  The Options Set is that listing of Properties and Associated Axioms that 
will result in a system-descriptive theory that will be analyzed pursuant to the derived formal logic 
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herein established.  The specific Options Set herein developed is the ATIS Options Set.  This set 
will consist of the derived list of properties, and all axioms that are associated with those properties.   

An analysis of a system is obtained by determining those properties that are descriptive of 
the system.  Those properties are then identified in the ATIS Options Set.   Following identification 
of these properties, the Associated Axioms are then selected.  Associated Axioms are those in which 
one or more of the selected properties occur.  With the selection of these axioms, an analysis of the 
system is possible using the Predicate, Relation, and Set Calculi herein developed.   

It is also intended that a topological analysis will eventually be possible either by the direct 
use of operations taken from mathematical topology or a derivation thereof.  Such an analysis, 
along with other analytic techniques, is beyond the scope of this report.   

 

The following axiom asserts that if we have a set of specific predicate-defined components 
and a set defined by relations of those components, then we have a System, S.  Axiom Schema (17) 
is the System axiom schema.   

Axiom (17)  ŵ (w) h Sx . ŷ (y) h Sφ :h: S = (Sx,Sφ)  

If Sx is a partitioned set, P, and Sφ is a family of affect relations, A, that determine a list of 

properties, P, then we can assign transition functions, T, a time function, T, and a system state 
transition function, σ.   

Axiom (18) asserts that for every property, P, there exists a property qualifier that 

determines the class ŵP (w).   

Axiom (18)  ∀P (w)∃ŵ(ŵP (w)) 

The following axiom asserts that if we have a property class by Axiom (18), then there is a 
morphism that can be defined between that class and another property class.   

Axiom (19)  ŵP (w) q ∃X∃ŷP (y)(X(ŵP (w) → ŷP (y))) 

Axiom (20) asserts that if we have a System so defined as characterized above, then we have 
a General System.9   

                                                 
9 A formal definition of General System is provided in a companion paper, Report #2-1, entitled “General System” 
Defined for Predictive Technologies of A-GSBT (Axiomatic-General Systems Behavioral Theory), which has been 
accepted for publication to Scientific Inquiry Journal, a web-based, peer-reviewed journal.   
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Axiom (20)      S | ∃ĝP⊂ Sx ∃ĥA⊂ ∏Sx ∃îT ∃T ∃σ :⊃: ∃G(G = (P, A, T, T, σ))   

Given a General System, G, then the ATIS Options Set, O, is defined by the set of system 

properties, P, and their associated axioms, A.   

O ATIS =df ŵ i=1:nP i(wi) 4 ŷj=1:nA i(yj)P i   

It is this ATIS Options Set that determines the properties and axioms that are used to 
analyze a system.  The observed affect relations of the system first identify the properties.  With the 
identification of the properties, the axioms are selected as those in which the properties are 
exhibited as one of the parameters.  Once the axioms are identified, the axiom schemas are used to 
determine an initial analysis of the system.  Further analyses can be obtained by use of the SCTs or 
other analytic techniques.   


